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The electrostatic behavior of biomolecules solved in water can be described by an elliptic
system of partial differential equations for the potential. In previous studies, this system
has been solved by the Boundary Element Method (BEM).

In this paper, we apply the Explicit Jump Immersed Interface Method (EJIIM) as an
alternative method to the BEM. Such a finite difference approach allows for a completely
automatized software for analyzing biomolecules in their natural surrounding.

The new method shows excellent agreement with the BEM results and has good conver-
gence properties and runtimes. In addition, in contrast to the BEM, where the fundamental
solutions of operators are necessary, the EJIIM approach can be easily extended to more
complex, especially nonlinear models.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Protein–protein, protein–DNA, and protein–ligand interactions are fundamental to many processes in molecular biol-
ogy. The latter is the basis for drug development and therefore, it is one of the most important, but also one of the most
expensive, fields of research of our time. To reduce the costs as well as the time needed for testing novel drug candi-
dates, effort is made to understand the basic functionalities of molecular interactions. Beside others, the electrostatic
interaction energy of molecules is a crucial contribution to the total energy. Moreover, it is important to understand
these interactions in the natural solvents of the biomolecules. Here, the basic question is: how does the solvent with
its response to the biomolecule’s charges influence the electric field and therefore the interaction of the biomolecules
between each other?

By molecular dynamic simulations, solvent effects can be studied well, since the solvent molecules can be taken into ac-
count explicitly (see [27,48,41]). Another, less time consuming, approach is to develop a macroscopic model, indirectly incor-
porating the reaction of different media by the so called polarization field, P:
r� EðrÞ ¼ 0; r 2 R; ð1aÞ
e0rEðrÞ ¼ q�rPðrÞ; r 2 R; ð1bÞ
where e0 is the dielectric constant of vacuum, see [16]. To account for the reaction of the medium, the dielectric operator e is
introduced. This operator acts on the electric field E as a filter, resulting in a dielectric field D caused by the external charges q
only. Then, (1b) in a region R with dielectric response e reads
. All rights reserved.
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rDðrÞ ¼ q; r 2 R; ð2aÞ
DðrÞ ¼ e0EðrÞ þ PðrÞ :¼ e0eðEðrÞÞ; r 2 R: ð2bÞ
Please note that in order to solve the Maxwell equations suitable boundary conditions are required. The simplest linear oper-
ator usually taken to measure the dielectric response is a multiplicative factor
DðrÞ ¼ e0eðrÞEðrÞ; r 2 R: ð3Þ
In the following, this ansatz is called the local theory. Eq. (1a) can be directly fulfilled by a gradient ansatz, E ¼ �$/, where
the scalar field / is the so called electrostatic potential.

Water is the main solvent for biomolecules and thus the solvent we will focus on. However, the local ansatz given in (3)
does not suffice to describe this complex, dipolar fluid. One aspect neglected in (3) are nonlinearities in the dielectric re-
sponse, which can easily become substantial, see [2,18,31]. A second effect neglected in (3) is the fact that, apart from the
dipole-dipole correlations, the water molecules build up a network formed by their hydrogen bonds, i.e., the solvent mole-
cules are trying to align with the neighbouring molecules as well as with the external charges.

In general, it is often argued that for proteins, the nonlinear effect should be comparatively small in magnitude, since the
charge distribution usually consists of partial charges and is smeared out considerably. Thus we assume that a linear re-
sponse of the medium is valid. In the following, we focus on the correlations of the water molecules by a linear operator
e: in [8], Dogonadze et al. denoted such a linear dielectric operator e, whose reaction to the medium at position r 2 R3 de-
pends non-locally on every other position r0:
DðrÞ ¼ e0

Z
R3

eðr; r0ÞEðr0Þdr0: ð4Þ
A well-founded model of the nonlocal dielectric operator is motivated in [8]. It reads
eðr; r0Þ ¼ e1dðr � r0Þ þ c2 1
4p

e�jr�r0 jj2

jr � r0j ; ð5Þ
where c2 ¼ ðeR � e1Þj2 > 0 and d is the Dirac delta function.
In (5), several parameters are introduced to describe the nonlocal effect: the dimensionless parameter e1 defines the

dielectric response in the limit of increasing wavenumbers measuring the variations of the electric field, see [38,12]. The sec-
ond material parameter is j, where 1=j defines the length scale at which solvent molecules interact with each other by their
hydrogen bonds. The local dielectric model – a constant response of strength eR – is recovered in the limiting process j!1.
More details on the validity can be found in [13].

In previous studies, first steps have been taken to model nonlocal electrostatics of biomolecules in water to get an idea of
the relevance of this complex solvent for the functionality of biomolecules [38,40,7]. The resulting integro-differential equa-
tions can be solved [9], but they require extremely high computational resources, making an extensive research difficult.

Within certain approximations, Hildebrandt et al. have been able to turn the set of equations into a set of differential
equations [14]. These approximations especially include a potential formulation of the dielectric field. We introduce the sca-
lar dielectric potential field w and assume in the following
E ¼ �$/ and D ¼ �$w:
It has already been demonstrated that the nonlocal model equations investigated in this paper successfully describe the sol-
vation scenario of molecules in water [15,13] and they have been solved numerically using the Boundary Element Method
(BEM). However, further model extensions (e.g. to include nonlinearities or to use different models for e), require the avail-
ability of a method which is easily extendable and widely applicable especially for nonlinear equations.

A possibility which additionally acquires highly accurate results is offered by the Explicit Jump Immersed Interface Meth-
od (EJIIM) together with suitable conditions along the artificial exterior boundary [45,21,23]. In this work, we present the
EJIIM for the nonlocal model equations and compare it with the BEM in terms of accuracy and performance. In addition,
we exemplary apply the EJIIM solver to two biomolecules.
2. Equations for nonlocal electrostatics

We consider a moleculeM to be a set of N spheres at fixed positions ri with radii Ri, and fixed charges qi; i ¼ 1; . . . ;N at its
centers. The sum over all point charges forms the charge density
qðrÞ ¼
XN

i¼1

qi dðr � riÞ; r 2 R3: ð6Þ
With X we denote the domain within the so called solvent excluded surface of M, see Section 4 for a description. With
R ¼ R3 n �X we denote the volume occupied by the solvent. The surface C separates the solvent region R from X.



Fig. 1. Illustration of the geometrical setup.
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The domain R is infinite in all directions. This property is easily realized with the BEM. For the finite difference approach,
we restrict R \X to a sufficiently large box and provide exterior boundary conditions on R. The geometric setup is illustrated
in Fig. 1.

The response of the inner medium is measured by a constant dielectric operator, i.e., inside, the local electrostatic equa-
tions are valid:
/X ¼ e0eXwX: ð7Þ

In R we assume a nonlocal theory of electrostatics to account for the water network. Thus, the unknowns of our system are
reduced to the set f/X;/R;wRg.

As the charge density q causes discontinuities in the electric potential /X, we take the ansatz /X ¼ /reac
X þ /mol. The field

/mol accounts for all the charges, treating them as if they were solved in a medium with eX, whereas the so called reaction
field potential, /reac

X measures the correction due to the dielectric boundary.
With (6) and the requirement, limjrj!1/mol ¼ 0, we have (cf. (2.79) in [13])
M/molðrÞ ¼ �
1

e0eX
q ) /molðrÞ ¼

1
4pe0eX

XN

i

qi

jr � rij
:

Therefore, the unknown part of /X reduces to /reac
X . For simplicity, we will drop the superscript from now on and write /X

instead of /reac
X .

The considered system consists of two domains with different dielectric response. It reads:
D/X ¼ 0 in X; ð8aÞ
DwR ¼ 0 in R; ð8bÞ
/R � /X ¼ p along C; ð8cÞ
a@n/X � @nwR ¼ g along C; ð8dÞ
ðD� g2Þ/R þ r2wR ¼ 0 in R; ð8eÞ
b@n/R � @nwR ¼ q along C; ð8fÞ
(2a) yields (8a) in X due to (7), and we introduced /mol to account for the source term q.
As for the present the solvent is assumed to be free of charge, we get (8b) instead of (2a) in R. An extension to dilute salt

solutions can be easily done with a finite difference solver. Eqs. (8c) and (8d) are the transmission conditions, forcing the
electric potential itself and the normal derivative of the dielectric potential to be continuous, see [16].

The dielectric response in R is given by (2b) together with (5) and finally yields (8e). To get a unique system of equations,
we need one further boundary condition. (8f) is an artificial boundary condition, which was proposed in [13].

The reference to the physical quantities is given in Table 1.
Before starting with the numerical treatment, we sum up the set of physically motivated parameters, used for all calcu-

lations presented in this paper
eX ¼ 2:0; eR ¼ 78:5; e1 ¼ 1:8; j ¼ 1=20 Å
�1
:

These values are taken from former successful studies of the solvation process, see [15,13,14].
3. Numerical methods

3.1. Boundary element method

We use BEM in this paper as the reference method. The main idea of BEM is to derive boundary integral equations whose
solution is the full set of boundary conditions-also known as Cauchy data, see [37]. Then, using so called representation for-
mulas, the fields in the regions of interest can be evaluated at any arbitrary point in a postprocessing step. Contrary to com-
mon discretization methods, like the finite difference or the finite element method, no artificial boundary condition is
necessary for exterior boundary value problems.



Table 1
Notations.

g2 r2 a b p g q

j2eR=e1 j2=ðe1 e0Þ e0eX e1 �/mol �e0eX@n/mol 0
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The required geometric input data is a numerical approximation of the molecular surface C – a triangulation of the sur-
face. The generation of such triangulations has received considerable attention in the literature, and most surface definitions
can today be triangulated with good quality (see, e.g., [34,4,47]). However, molecular surfaces tend to be very complex –
much more complex than, e.g., typical machine parts in CAD applications – and a triangulation with guaranteed quality will
quite often require tens or hundreds of millions of triangles. Thus, input meshes for BEM are often subjected to mesh coars-
ening algorithms (see, e.g., [32,6]). In this case, a manual inspection is usually performed to ensure topological correctness
(for instance, charges located on small hydrogens might end up on the wrong side of the mesh after coarsening). In practice,
even though there has been significant progress in input mesh generation for biomolecular BEM, typical application scenar-
ios today still require manual intervention and curation, preventing a fully automated workflow [15]. This, however, will
likely be overcome in the near future.

Apart from this technicality, the use of the boundary element method imposes a more serious restriction – the need for a
fundamental solution of the differential operator. Due to this requirement, an extension of the fundamental equations of
nonlocal electrostatics like the exchange of the dielectric operator or the inclusion of nonlinear counter ion terms, becomes
a challenging task.

3.2. Explicit jump immersed interface method

The Explicit Jump Immersed Interface Method (EJIIM) is a finite difference method that works on an equidistant Cartesian
grid. The method can handle non-grid aligned discontinuities in the equation and of the solutions: near discontinuities, the
standard finite difference approximations are modified by adding correction terms, which involve jumps in the function and
its derivatives.

For details on EJIIM, we refer the interested reader to the earlier works [43,46,33,28,30,29]. In this section, only the main
idea of the method is recapitulated and necessary extensions that are needed for solving (8) are presented.

System (8) is a two-phase problem for / and a boundary value problem for the variable w. As always done in the EJIIM
approach, the system (8) is extended by an additional equation
DwX ¼ 0 in X; wX ¼ 0 along C;
forcing wX to be zero. Along the exterior boundary @ðR [X [ CÞ, a Dirichlet boundary condition is given. This will be dis-
cussed in more detail in Section 6.

Remark 1. Requiring wX to be zero is different from the local electrostatic condition (7). Note, however, that no changes are
made with respect to the system (8) and the ‘‘correct” wX can be easily obtained in a postprocessing step, if required.

For a piecewise continuous function u : X [ R! R with a possible discontinuity across the interface C and a 2 C, we de-
fine the onesided values of u as uXðaÞ :¼ limX3r!auðrÞ; uRðaÞ :¼ limR3r!auðrÞ and the jump ½u�a :¼ uRðaÞ � uXðaÞ. Mostly, the
index and argument a will be omitted for the jump condition, meaning that the relation holds everywhere along C.

3.2.1. Discretization of system (8)
3.2.1.1. Regular grid. A regular grid with mesh width h is imposed over R [X. We will use the standard notation
ui;j;k :¼ uðxi; yj; zkÞ for a grid point ðxi; yj; zkÞ; i 2 f1; . . . ;nxg; j 2 f1; . . . ;nyg; k 2 f1; . . . ;nzg. Points where the interface C is
cut by the grid lines are called intersections.

A grid point is classified as regular if the standard central finite difference approximation of (8) is not influenced by the
interface C. All other points are called irregular. To discretize the equations, standard finite differences are used at all regular
points.

3.2.1.2. Corrections at irregular points. At all irregular points, jump dependent correction terms are introduced to achieve an
OðhÞ approximation. In a planar situation as in Fig. 2, we would have
@xxuðxi; yjÞ � @h
xxuðxi; yjÞ �

1

h2 ½u�a2
þ s2½@xu�a2

þ s2
2

2
½@xxu�a2

� �
; ð9aÞ

@yyuðxi; yjÞ � @h
yyuðxi; yjÞ �

1

h2 ½u�a1
þ s1½@yu�a1

þ s2
1

2
½@yyu�a1

� �
; ð9bÞ
where @h
xxu and @h

yyu are the standard central finite difference operators [43].



Fig. 2. Two dimensional illustration of a discretization at an irregular grid point ðxi; yjÞ with two intersection points a1 and a2.
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3.2.1.3. Jump variables. Note that the jumps in the Cartesian derivatives are not known explicitly. Instead, we introduce them
as new additional variables.

To write the corrected approximations in a matrix–vector form, we introduce discrete solution vectors U and W contain-
ing values of / and w at the grid points as well as vectors F1 and F2 storing the right hand side of (8a,b,e). In addition, we have
vectors J/; Jw and J ¼ ðJ/; JwÞ containing all newly introduced jumps in /;w, and their derivatives.

Then, the discrete form of (8) can be written as
Dh � g2I r2I

0 Dh

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:A

U

W

� �
|fflfflffl{zfflfflffl}
¼:W

þ
C11 0
0 C22

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼:C

J/

Jw

 !
|fflfflffl{zfflfflffl}
¼:J

¼
F1

F2

� �
|fflfflffl{zfflfflffl}
¼:F

;
ð10Þ
where Dh is the discrete Laplace matrix (defined in X [ R) and I is a diagonal matrix with ones at the rows corresponding to
the grid points in R and zeros otherwise. The term CJ codes the correction terms at the irregular grid points.

The additional equations for the jump variables are gained from the interface conditions in (8) and from onesided
extrapolation.

3.2.2. Approximating the jump variables
3.2.2.1. Jump conditions. In order to apply the method in (10), we need the jumps in Cartesian derivatives of the functions /
and w, respectively.

� The 0th order jump for / is given by (8c). For w, we set the trivial jump condition ½w� ¼ wR � wX ¼ wR as we need wX ¼ 0.
� The 1st order jumps: Let t and s be two tangents of C such that ðn; t; sÞ forms an orthonormal positively oriented system.

Further, let m 2 R3�3 be the transformation matrix with columns given by vectors n; t, and s. Then, from system (8) we
directly obtain
@x/

@y/

@z/

264
375 ¼m

@n/

@t/

@s/

264
375 ¼m

a�b
b @n/X þ q�g

b

@tp

@sp

0B@
1CA:
For w, we do not know ½w� analytically. Thus, we now use
@xw

@yw

@zw

264
375 ¼ @xwR

@ywR

@zwR

0B@
1CA ¼m

@nwR

@twR

@swR

0B@
1CA ¼m

1
2 a@n/X � gð Þ þ 1

2 b@n/R � qð Þ
@twR

@swR

0B@
1CA:
� All necessary second order jumps are obtained by extrapolation:
@2/
� �

¼ @2/R � @2/X; @2w
� �

¼ @2wR � @2wX ¼ @2wR:
The onesided values of /X;R; wR and derivatives are obtained by extrapolation (of unknown functions) from the grid
points to the interface.

3.2.2.2. Onesided extrapolations. In [29], it was observed for planar boundary value problems that an appropriate choice of
onesided extrapolations can increase the efficiency of the method considerably by reducing the necessary iteration counts.
Our extrapolation is built on a least squares based second order polynomial fit and is essentially the same as used in [33]. We
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have an additional requirement that the extrapolations should fulfill also the Eqs. (8a,b,e). This forces to simultaneously
extrapolate / and w.

3.2.3. Solving the discrete system
3.2.3.1. Discrete system. Onesided extrapolation together with the jump condition can be written in the form DW þ J ¼ eF .
Then, with (10) we obtain the full EJIIM discretization
Fig. 3.
SES.
A C

D I

� �
W

J

� �
¼

FeF
� �

; ð11Þ
where I is the identity matrix. System (11) is solved iteratively using BiCGSTAB [17] by a Schur complement for the variable
J:
ðI� DA�1CÞJ ¼ eF � DA�1F: ð12Þ
Remark 2. Any Krylov space method that is applicable to nonsymmetric matrices could be used here. A popular choice is
GMRES [17] due to its often good convergence properties. However, for three dimensional problems, storage becomes an
essential issue and even restarted GMRES has higher memory requirements than BiCGSTAB.

Once the jump vector J has been found, W is obtained from W ¼ A�1ðF � CJÞ.

3.2.3.2. Fast solver. In each iteration, when solving (12), we need to apply the operator A�1. For this the following discrete
problem has to be solved
Dh � g2I r2I

0 Dh

 !
U

W

� �
¼

P1

P2

� �
;

where U and W are discrete solution vectors at the grid points and P1; P2 are some right hand side vectors, changing in each
iteration. Solving is done in two steps:

1. W ¼ ðDhÞ�1P2

2. U ¼ ðDh � g2IÞ�1 P1 � r2IW
� �

This is solved by an additional (inner) BiCGSTAB iteration. Iteration counts in this formulation are bad (around 50–60 to
reach 10�10 tolerance) and are improved considerably by using a discrete Laplace as preconditioner. That is, we solve
instead
ðDhÞ�1ðDh � g2IÞU ¼ ðDhÞ�1 P1 � r2IW
� �

:

Using preconditioning, 5–6 iterations were typically necessary for convergence.

The operator ðDhÞ�1 is always applied by an FFT-based fast solver from [44].

4. Input generation for the explicit jump immersed interface method

The input information EJIIM requires is a surface description of the molecule in the grid. Since there is no canonical def-
inition of a molecule’s surface, three different surface models are commonly used, see Figs. 3 and 4.

1. Van der Waals surface (VdW): The union of the atoms the moleculeM is composed of. The atoms are modelled by spheres.
2. Solvent Accessible Surface (SAS): Rolling a solvent molecule over the VdW surface, the SAS is the area traced out by the

center of the solvent molecule during the rolling process. The solvent molecule is represented by a sphere, the so–called
probe sphere.

3. Solvent Excluded Surface (SES): Rolling a solvent molecule over the VdW surface, the SES is the surface traced by the
inward-facing surface of the probe sphere.
Left: VdW (dark gray), SAS (light gray); middle: constructing SES:SAS intersection points that were already processed are additionally drawn; right:



Fig. 4. GUANCH01 as a typical example of a molecule in the tested subset of the MMFF94 test data set. The surface mesh is the original triangulation used
for the BEM calculations. Length units are given in Angstrom [Å].
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In solvation studies, both, the SES and the SAS are reasonable surface definitions [20]. Since the SES really separates the
molecule M from the solvent molecules, this definition is used in our study.

Since the input generation is not the focus of this paper, we only give a rough idea of the method: the core of the algo-
rithm is the calculation of the intersection points of an arbitrary sphere with a regular, equidistant grid. For the SAS of a mol-
ecule, we generate this intersection information of every atom in a small grid and merge it consecutively with the final grid,
which comprises all the information of already merged atoms. With the aid of different priority tables, the merging proce-
dure can be adopted to a merging of atoms as well as of probe spheres. The latter is to simulate the solvent molecule rolling
upon the VdW surface. This finally reveals the SES.

This procedure is sketched in Fig. 3: starting with the SAS of the molecule, which consists of two atoms, we merge probe
grids that are centered on the discrete SAS intersection points. The algorithm provides the EJIIM input as it is described in
[28] and seen in Fig. 2. It is used to generate the input data for all EJIIM calculations presented in the following sections.

The complexity of this simple approach is mainly determined by the merging procedures of all small probe grids, which
yieldsOðM � n3Þwith M denoting the number of SAS intersection points and n3 the probe grid dimension. For high resolution
calculations and for molecules consisting of more than 100 atoms, this approach is no longer efficient. However, the idea is a
good starting point for more sophisticated and more efficient methods currently under development.

5. Numerical comparison of EJIIM and BEM

Our goal is to develop an EJIIM solver that provides results with comparable or possibly better quality than the existing
BEM code. For this, we will discuss several studies:

� we check the convergence order of both methods for spherical symmetry,
� we analyze the numerical convergence, i.e., how much does the EJIIM solution differ from the BEM result,
� we investigate different approximations of the boundary conditions.
5.1. Convergence towards analytical solution

The convergence studies are done with spherical geometry, as in this case, the analytical solution for model (8) is avail-
able. Additionally, the spherical geometry offers the possibility to generate ‘‘exact” input data for both methods.

X is a sphere with radius 1. We center the sphere at ð0:2;0:3;0:01Þ to avoid symmetry effects and locate a unit electron
charge q ¼ 1 at the sphere’s center. For EJIIM, the computational domain is given by R [X ¼ ½�5;5� � ½�5;5� � ½�5;5� in all
cases. The necessary Dirichlet condition along the exterior boundary is given by the analytical solution.

Convergence is tested with respect to the parameter h, which, in the case of EJIIM, is the usual mesh width. For a trian-
gulation T with triangles T 2 T; h is defined as in [37], p. 213:
hbem ¼max
T2T

hT ; hT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
areaðTÞ

p
: ð13Þ
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For several resolutions (EJIIM) and triangulations (BEM), respectively, the absolute numerical error has been computed at
randomly selected points (20 in X, 100 in R). Fig. 5 confirms that the expected second order convergence for both methods
has been achieved.

An important observation can be made from Fig. 6, where we have plotted the error versus the number of intersection
points (EJIIM) or nodes (BEM). For both methods, this is a quantity that is related to the surface resolution and can be directly
compared. We see that for the potential /, EJIIM and BEM need a similar number of surface nodes to achieve the same
quality.

Remark 3. Figs. 5 and 6 confirm the theoretically expected second order convergence of EJIIM and BEM. Note, however, that
the quantitative values for the dielectric potential w in the case of EJIIM are worse than for /. This phenomenon can be
explained by (9b). For the electrical potential /, we have a pure transmission problem with a known jump ½/�, whereas for ½w�
it is numerically computed (second order polynomial fit as done in Section 3.2.2 leads to Oðh3Þ accuracy) and the correction
term in (9b) has a coefficient of Oðh�2Þ. In our situation, this is not a real disadvantage, since the physically interesting
quantity is /.

The EJIIM code has also been tested with more general right hand sides and arbitrary functions in the transmission con-
ditions, see Table 1. In all cases, the second order convergence was confirmed. Unfortunately, analogous runs with BEM were
not possible due to built-in limitations of this method.

5.2. Comparison on molecular geometries

5.2.1. Test set
As test set, we have selected six molecules of the validation suite of MMFF94 [25], three of them with non-vanishing total

charge (charged) and three with vanishing total charge (uncharged). Radii and charge assignments have been performed



Table 2
Summary data of the test set. The grid dimension is the same in all three directions.

Molecule Grid dimension Intersections BEM elements

h ¼ 0:5 h ¼ 0:25 h ¼ 0:125 h ¼ 0:5 h ¼ 0:25 h ¼ 0:125 QECD Original BF

Charged
AN05A 31 61 121 482 1904 7556 702 1404 5616
BRMW1 33 65 129 648 2586 10252 642 1286 5144
GUANCH01 39 77 153 1034 4046 16192 1646 3292 13168

Uncharged
FUCMUL 35 69 137 906 3600 14440 1060 2122 8488
FUDPOJ 31 61 121 656 2636 10598 978 1956 7824
ZZZIZA01 39 77 153 1242 4874 19568 1436 2872 11488
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with the MMFF94 implementation in BALL [19]. In Table 2, we give the numerically relevant parameters for the molecules.
Further details are provided in the Supplementary material.

All EJIIM computations have been performed with three different grids, with mesh widths h ¼ 0:5; h ¼ 0:25, and
h ¼ 0:125. For BEM, three resolutions have been used: the original one, generated by [5], roughened by a Quadric Edge Col-
lapse Decimation algorithm (QECD) and refined by a Butterfly Subdivision algorithm (BF) [6,10].

5.2.2. Error measures
Equipped with two different methods to solve our system of Eq. (8), the question arises how to measure their perfor-

mance in real world problems, where no analytical solution is available. We decided to stochastically generate point sets,
XX and XR, of 100 points inside and outside the molecule, respectively. XR lies in the computational box of the EJIIM calcu-
lations. The deviation is measured in the following seminorms
Table 3
Numeri

Mole

e /0
X



e /0

X



Facto

e /q
X



e /b

X



Facto

e /0
R



e /0

R



Facto

e /q
R



e /b

R



Facto
jujX :¼max juðXXÞj; jujR :¼max juðXRÞj:
Further, for the quantity u, we will use the notations uh: the EJIIM solution with mesh width h 2 f0:5;0:25;0:125g; ubem: the
BEM solution with the original surface triangulation, uqecd: the BEM solution with QECD-coarsened and ubf : the BEM solution
with BF-refined surface.

To compare quantities v and w we will use the function
eðv;wÞ :¼ jv �wjI
jwjI

; I 2 fX;Rg: ð14Þ
5.2.3. Results
First, we are interested in numerical convergence only, thus we use the ð/bf

R ;w
bf
R Þ values as the exterior boundary condition

for the EJIIM computation. Results computed with this boundary condition can be found in Tables 3 and 4. To save space, we
report only the values for the physically relevant electric potential /.

From the EJIIM as well as from the BEM results listed in Table 3, we can not directly deduce a specific convergence rate.
This is due to the nontrivial input data. Additionally, the randomly chosen point sets on which the error function is evaluated
cal convergence towards the fine grid solution.

cule Charged Not charged

AN05A BRMW1 GUANCH01 FUCMUL FUDPOJ ZZZIZA01

:5;/0:125
X

�
2.22e�2 1.58e�2 3.61e�2 5.47e�1 5.66e�1 2.10e�1

:25;/0:125
X

�
2.65e�3 4.14e�3 5.70e�3 6.18e�2 5.31e�2 5.30e�2

r 8.39 3.82 6.33 8.87 10.66 3.95
ecd
;/bf

X

�
6.28e�3 1.33e�2 9.62e�3 1.94e�1 2.50e�1 1.20e�1

em;/bf
X

�
4.82e�3 4.97e�3 2.59e�3 6.02e�2 5.82e�2 5.90e�2

r 1.30 2.67 3.72 3.21 4.29 2.03
:5;/0:125

R

�
9.23e�3 5.43e�3 1.69e�2 2.29e�2 9.43e�2 6.02e�2

:25;/0:125
R

�
1.70e�3 1.10e�3 1.53e�3 1.67e�3 7.67e�3 2.61e�3

r 5.43 4.92 11.0 13.7 12.3 23.0
ecd;/bf

R

�
3.70e�3 1.18e�2 7.72e�3 4.80e�3 1.04e�2 9.58e�3

em;/bf
R

�
2.97e�3 3.38e�3 1.01e�3 1.23e�3 9.75e�3 4.26e�3

r 1.25 3.50 7.62 3.92 1.06 2.25



Table 4
Convergence towards BEM results.

Molecule Charged Not charged

AN05A BRMW1 GUANCH01 FUCMUL FUDPOJ ZZZIZA01

e /0:5
X ;/bf

X


 �
2.05e�2 1.35e�2 3.56e�2 5.75e�1 5.24e�1 2.05e�1

e /0:25
X ;/bf

X


 �
2.70e�3 3.75e�3 5.38e�3 8.71e�2 6.79e�2 4.77e�2

e /0:125
X ;/bf

X


 �
2.36e�3 4.26e�3 1.54e�3 3.91e�2 3.08e�2 1.87e�2

Error estimate 3e�3 5e�3 2e�3 4e�2 4e�2 2e�2

e /0:5
R ;/bf

R


 �
8.69e�3 7.68e�3 1.65e�2 2.29e�2 9.39e�2 6.02e�2

e /0:25
R ;/bf

R


 �
1.62e�3 3.63e�3 9.98e�4 1.67e�3 7.15e�3 2.64e�3

e /0:125
R ;/bf

R


 �
1.27e�3 2.67e�3 1.04e�3 1.30e�3 2.72e�3 1.06e�3

Error estimate 2e�3 3e�3 2e�3 2e�3 3e�3 2e�3
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allow only a rough interpretation: The outer electric potential of uncharged molecules, /R, has higher absolute errors and
faster EJIIM convergence rates than those of charged molecules on average. The reason lies in the fast decrease of the poten-
tial outside, which is better mapped for higher grid resolutions.

With Table 3, we demonstrate that both methods really converge to the fine grid solutions.
In Table 4, we study the EJIIM solution versus the BEM solution. The difference between the finest grid solutions, /0:125

X;R for
EJIIM and /bf

X;R for BEM, rounded upwards to one significant digit, is used as a rough estimate for the numerical error later
when approximating the boundary condition.

It is important to mention that in Table 4, we are not considering the numerical error, that is, the difference between the
exact and numerical solutions. Instead, we are looking for the difference between two solutions, where /bf

X;R has been used as
reference. Thus, stagnating difference, like for the BRMW1 molecule, is legitimate.

6. Approximations of the exterior boundary condition

In order to assess the effect of different boundary value approximations, we propose different boundary conditions (b.c.)
at the exterior boundary of the EJIIM computational domain:

� homogeneous exterior b.c., that is, zero Dirichlet boundary condition
� b.c. without inner medium (see Section 6.1)
� b.c. without inner medium and simplified charge distribution (see Section 6.1)

6.1. Boundary condition without inner medium and simplified charge distribution

Although we have to cope with a transmission problem, the behavior far away from the surface is mainly determined by
the charge distribution and the dielectric response outside the molecule. This motivates the following approximation: we
assume that the charge distribution exists in the outer medium only, skipping the boundaries and therefore the coupling
of the two media.

The nonlocal electrostatic potentials of charge density q in a setting without inner medium, i.e., R ¼ R3 and X ¼ ;, read as
follows
wRðrÞ ¼
1

4p

Z
R3

qðr0Þ
jr � r0j dr0; ð15aÞ

/RðrÞ ¼
1

eRe0
wRðrÞ þ

1
4pe0

1
e1
� 1

eR

� �Z
R3

qðr0Þ e
�gjr�r0 j

jr � r0j dr0: ð15bÞ
Assuming these analytical solutions with q defined in (6) as boundary value approximations is denoted approximated b.c.
(approx).

To generate boundary values efficiently, we replace the charge distribution q defined in (6), by an arrangement with only
two opposed charges. For index sets Iþ :¼ fi j 1 6 i 6 N; qi > 0g and I� :¼ fi j 1 6 i 6 N; qi 6 0g we define
Q� :¼
X
i2I�

qi; r� :¼ 1
Q�

X
i2I�

ri qi:
Then,
qeff :¼ Qþ dðr � rþÞ þ Q� dðr � r�Þ:
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Replacing the molecule’s charge density by qeff in (15b), we gain a fast boundary value approximation denoted effective di-
pole b.c. (edp). Note that, if one of the effective charges is zero, only the other is taken into account and we obtain an effective
monopole.
6.2. Discussion of the boundary approximations

To check the quality of the proposed boundary conditions, we use again our test set. All calculations in this section are
done on the finest mesh with h ¼ 0:125. In addition, all calculations have been carried out on two different box dimensions
with equal resolution in order to test the influence of the approximations: 4 Å and 6 Å from the molecular surface, respec-
tively, see Fig. 7 for an illustration.

For the reference solution uref , where u 2 f/X;/R;wRg, the exterior boundary condition is provided by the BEM calculation
on the refined mesh. In Table 5 the values are computed as ~eðuÞ :¼ ku� uref k1=kurefk1; u 2 f/X;/Rgwith different boundary
conditions for ð/R;wRÞ.
6.2.1. Homogeneous, approximated, and effective dipole conditions
A closer look at Table 5 suggests that the approximated b.c. provides the best approximation: here, ~e, which accounts for

the error made by the boundary value approximation, is always of the same order as the numerical error, which was ex-
tracted from Table 4.

However, also the effective dipole and even the homogeneous ansatz can reasonably reproduce the BEM results. Note that
for all molecules of our test set with vanishing total charge, the effective dipole approximation does not lead to satisfying
boundary condition. This highly depends on the spatial charge distribution: for vanishing effective monopole and dipole
(mirror symmetry of the charge distribution for example) the effective dipole approximation is in fact a homogeneous
boundary condition and therefore leads to the same accuracy. In contrast, for the charged molecules of our test set, the effec-
tive approximation is comparable with the approximated boundary condition when the 6 Å computational box is taken.

In Fig. 7, we illustrate the behavior of the approximated boundary conditions for an (un)charged molecule, (FUDPOJ)
GUANCH01. The difference between the solution of (8) and (15b), evaluated on R, is additionally plotted in Fig. 7 and sup-
ports our assumption that the influence of the dielectric boundary is negligible for the outer field solutions a few Å from the
molecule.
6.2.2. Focusing condition
The focusing b.c. means to compute a larger but less dense grid and to take its result for initializing the original dense grid.

For the rough calculation, we recommend boundary conditions, which are fast to generate. In the calculations, the effective
b.c. turns out to be a good choice. Overall, the focusing method generates roughly the same accuracy as the dipole b.c. when
the 4 Å computational box is taken, thus we dispense with the tables.
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Fig. 7. Reference solution /R , approximated and effective dipole potentials. Cuts along the plane z ¼ z� , where ðx�; y�; z�Þ is the center of the computational
box. The black border shows the 4 Å box (see Section 6.2). Contour lines of the difference are selected logarithmically to visualize also the small values.



Table 5
Approximation of the exterior b.c.; hom: homogeneous, edp: effective dipole, approx: approximated, e: estimate of the numerical error.

Molecule 4[A] Box 6[A] Box e

hom edp approx hom edp approx

~eð/XÞ
AN05A 1.69e�1 2.59e�2 2.51e�2 4.95e�2 5.54e�3 5.43e�3 3e�3
BRMW1 2.25e�1 6.73e�2 4.04e�2 5.76e�2 1.19e�2 7.92e�3 5e�3
GUANCH01 1.01e�1 5.86e�2 1.29e�2 3.19e�2 9.79e�3 2.63e�3 2e�3
FUCMUL 7.74e�1 7.74e�1 6.38e�2 1.10e�1 1.10e�1 1.09e�2 4e�2
FUDPOJ 3.98e�1 2.97e�1 4.36e�2 6.16e�2 3.63e�2 8.35e�3 4e�2
ZZZIZA01 9.27e�1 9.27e�1 8.28e�2 1.35e�1 1.35e�1 1.15e�2 2e�2

~eð/RÞ
AN05A 1.90e�1 3.17e�2 2.95e�2 7.54e�2 1.16e�2 1.09e�2 2e�3
BRMW1 3.04e�1 1.13e�1 5.74e�2 1.16e�1 3.63e�2 2.07e�2 3e�3
GUANCH01 1.38e�1 1.06e�1 1.96e�2 5.77e�2 3.56e�2 7.51e�3 2e�3
FUCMUL 9.50e�2 9.50e�2 6.35e�3 2.86e�2 2.86e�2 2.06e�3 2e�3
FUDPOJ 7.84e�2 8.07e�2 5.91e�3 2.46e�2 2.16e�2 2.02e�3 3e�3
ZZZIZA01 2.25e�1 2.25e�1 2.10e�2 7.05e�2 7.05e�2 6.41e�3 2e�3
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We conclude that the derived boundary value approximations do not reduce the quality of the solution strongly. The spe-
cial choice of the b.c. depends on the demand on accuracy and efficiency. Thus, the alternative to the BEM finally consists of
the EJIIM coupled with an appropriate approximation of the exterior boundary values.
7. Computational costs

The EJIIM approach was implemented using Matlab version R2007b, the BEM was implemented in C++ and uses the AT-
LAS library [42], for efficient solution of the linear system of equations.

To give a rough impression on the computational costs, we compared both methods on a machine with eight Intel(R)
Xeon(R) CPU X5355 @ 2.66GHz processors and 8GB RAM. In Table 6, we list the runtimes necessary for the EJIIM calculation
of AN05A (Small Box) with homogeneous b.c. and those of the BEM calculation to generate the Cauchy data.

The runtimes and iteration counts for other molecules are similar. In order to relate the results to the numerical quality
and to the surface information, we refer to Tables 5 and 2, respectively.

In Table 6 we see that runtimes of both methods are of approximately the same order. Of course, this comparison does not
allow us to answer the question if one or another method is faster or requires less memory. These factors depend heavily on
the programming language, particular implementation, and the computational system. In addition, the output of EJIIM (full
grid solution) differs from the BEM result (certain data along the surface). However, we see that both methods can really
compete.
8. Application to biomolecules

In this section we exemplarily study the effect of the nonlocal theory on two biomolecules, the enzyme trypsin and the
protein ovalbumin (PDB-entries 2PTC [24] and 1OVA [36], respectively). A sketch of the surfaces is shown in Fig. 8.
8.1. Trypsin

With its 3223 atoms, trypsin is a small protein. Trypsin is known for its functionality as a digestion enzyme and for its
electrostatic to play a crucial role in the binding process of the inhibitor BPTI, [20]. In Fig. 8(a) the binding pocket of trypsin
can be located in the upper left.
Table 6
Computational costs for AN05A.

EJIIM BEM

Type Runtime (sec)
matrix setup

Runtime (sec)
solving

Outer BiCGSTAB iterations

(10�8 stopping tolerance)

Inner BiCGSTAB iterations

(10�10 stopping tolerance)

Type Runtime (sec) solving
Cauchy Data

0.5 5 7 6.5 4 qecd 3
0.25 41 78 7.5 4 bem 20
0.125 1023 1009 8.5 4 bf 821



Fig. 8. Protein surfaces for (a) trypsin and (b) ovalbumin.
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For trypsin we solved the nonlocal electrostatic equations with BEM and EJIIM to compare the influence of the boundary
conditions and the overall accuracy of the solution. Additionally, we calculated the local electrostatic solution with the exist-
ing BEM solver, see [3] for the local model equations.

For the EJIIM calculation we took a mesh width of 0.5 Å and box dimensions ½88 Å� 88 Å� 88 Å�. The boundary values
have been calculated with the approximate boundary condition defined in Section 6.1. The BEM calculation is based on a
surface triangulation with about 20000 elements, for which all the available working storage was used.

First, we analyse the accuracy of both numerical methods, where an appropriate measure for the deviation was defined in
Section 5.2.2. To have representative point sets in (14) we stochastically choose 1000 points in X and R, respectively. The
relative difference inside the molecule, e /ejiim

X ;/bem
X


 �
¼ 1:23e� 2, whereas in R; e /ejiim

R ;/bem
R


 �
¼ 2:5e� 3. Therefore, we ob-

serve the same order of magnitude of the numerical error as for the molecules discussed in Section 5. From this we can con-
clude that the EJIIM method can handle complex and nontrivial molecule geometries.

From the results in Section 6.2 we found that (15b) is not only suitable for an approximation of the boundary values, but
gives an impression of the electrostatic potential in the whole exterior region. In Fig. 9 we compare the approximated po-
tential to the numerical solution of (8) in terms of (14). As can be seen, the approximated boundary condition can reproduce
the numerical solution not only for simply shaped, small molecules, it gives an adequate estimation of the potentials for
complex geometries as well. This implies that we can reduce the box dimensions needed in the EJIIM calculations and there-
fore make the method more efficient. Moreover, it is a fast and very precise mean for a first estimation of the potential, at
least several Å apart from the molecule.

Fig. 10 illustrates the influence of the water network by comparing the nonlocal to the corresponding local potential.
Here, a significant difference in the strength of the electric potential can be observed: for the local model, Fig. 10(b) the po-
tential reaches a value of �0:2V only deep inside the binding pocket, whereas the nonlocal framework yields an interesting
structure of the potential in the vicinity of the pocket and a far-reaching positive potential further away. In the local theory,
the water shields the electrostatic potential with about 78, but this is overestimated because the water molecules try to align
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Fig. 9. The difference of /R and (15b) evaluated in R for an arbitrary cut through the molecule.



Fig. 10. Isosurfaces of trypsin for /R ¼ 0:2V (white) and /R ¼ �0:2V (black).

4072 S. Weggler et al. / Journal of Computational Physics 229 (2010) 4059–4074
with their next neighbors and therefore reduce the shielding. The resulting long-range character can have an important
influence on the binding process of ligands: on the one hand the ligand ‘‘feels” the force farther away. On the other hand
ligands can be bound tightly to the binding pocket, since near the surface the nonlocal potential takes values up to one order
higher than the local potential.
8.2. Ovalbumin

As a second application we choose the protein ovalbumin, which is used in different areas of research such as immuni-
zation and biochemical studies. With its 6000 atoms, Ovalbumin forms a complex surface shape, see Fig. 8(b). A qualitative
surface triangulation would have up to 50000 elements. Such a calculation would exceed the memory requirements needed
in our BEM implementation preventing its solution. However, with EJIIM we can solve (8): for this we use a grid resolution of
0.5 Å and box dimensions ½93 Å� 93 Å� 93 Å�. The boundary values have been calculated with the approximate boundary
condition, see Section 6.1.

In Fig. 11 we exemplarily present the isosurfaces of the nonlocal potential at�0:1V. Because of the large amount of partial
charges on the surface, the potential exhibits a complex, diversified behaviour. Altogether, the positive isosurface is closer to
the surface. The molecule has a total charge of �6e, and this is why the negative contribution dominates the potential when
moving away from the molecule.

The application of nonlocal electrostatics using EJIIM clearly demonstrates that on the one hand the qualitative compar-
ison of the electrostatic potential, based on the different solvent models is worthwhile since the dielectric response influ-
ences the characteristics of the system. On the other hand the results underline that an application to biomolecules of
arbitrary size and shape is possible with EJIIM. The input generator together with the EJIIM solver can be used to automat-
ically generate the physical potentials. This is an essential step to further studies, especially to the comparison of experimen-
tal data.
Fig. 11. Isosurfaces of ovalbumin for /R ¼ 0:1V (white) and /R ¼ �0:1V (black).
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9. Summary and outlook

In this work, we have proposed the Explicit Jump Immersed Interface Method as a suitable alternative to the Boundary
Element Method for solving the nonlocal electrostatic equations. The exterior boundary condition necessary for the EJIIM is
provided by approximations considering the dielectric response of the solvent only. As our numerical results have shown,
these boundary conditions do not spoil the accuracy of the solution. Indeed, this study reveals that the evaluation of the
boundary approximation in the whole outer region yields an excellent estimation of the numerical solution.

It is often desirable to have several different methods that solve the same set of equations. On the one hand, the correct-
ness and the accuracy of the methods can be double checked. This is successfully done in Sections 5 and 6. On the other hand,
as the methodology of BEM and EJIIM is different, the method of choice depends on the focus of a particular study. If one is
interested in the solvation energies of a molecule only, BEM is preferable as the evaluation of the representation formulas
have to be done at a few discrete points only – the atom centers. On the other hand, to study dynamics of a molecule driven
by electrostatic forces, e.g., we require knowledge about the whole scalar potential. Therefore, a method that solves for the
fields in a grid directly would be a good choice. Here, recent progress in BEM has to be mentioned: with an adaptive mul-
tipole BEM, Lu et al. succeed in reducing the computational complexity of potential evaluation in a full grid of dimension n3

(naive implementation: Oðn3 � BEM ElementsÞ) to an order Oðn3 þ BEM ElementsÞ, [22].
Besides the study in terms of accuracy and convergence for a set of small molecules, we solved the nonlocal electrostatic

equations for a typical protein and an enzyme, see Section 8. A comparison of the nonlocal and the local electrostatic poten-
tials reveals the ‘‘frustrated” character of the water network, that finally causes a higher electrostatic potential on and near
the surface. This will certainly have an influence on all physical quantities.

Here, a future challenge is the modelling of nonlocal electrostatics within the nonlinear Poisson Boltzmann theory. Such
an extension prevents the use of BEM even when applied to the local framework. Furthermore an intense study of the ion-
water correlation that certainly influences the correlation length of the water network might reveal more insight in the
diversity of interaction effects which are qualitatively beyond Poisson Boltzmann. This can already be seen in (8), where
the water network obtains a similar role as ions in the Poisson Boltzmann theory when screening the electrostatic field.

In addition, one future project is to develop a fully automatic, robust solver for various (non)local electrostatic models
freely available in the biomolecular framework BALL [19]. This is necessary to make the nonlocal model useful for the sci-
entific community. An additional task which is essential for further application to biomolecular research, such as solvation
studies of biomolecules in their natural surrounding, is the design of a parameter set for the atom type radii optimized for the
nonlocal response. Commonly used force fields, [26,35,11,1,39], have parameter sets which work well using a local electro-
static contribution. With a ‘‘nonlocal parameter set” at hand physically meaningful quantities such as the solvation energy of
molecules but also the binding affinities of small ligands to the protein’s binding pocket can be studied and compared to
available experimental data.

In summary, with the development of the presented finite difference solver we pave the way for a broader application of
nonlocal electrostatics. This study offers new possibilities on the research of biomolecules solved in water: with EJIIM we
have the ability to easily extend and change the solvent model in a straightforward way and therefore to advance the knowl-
edge about molecular interaction.
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